The expanding vistas of spatial transcriptomics

The expanding vistas of spatial transcriptomics

  • Moffitt, J. R. et al. Molecular, spatial, and purposeful single-cell profiling of the hypothalamic preoptic disclose. Science 362, eaau5324 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ortiz, C. et al. Molecular atlas of the grownup mouse brain. Sci. Adv. 6, eabb3446 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, M. et al. Spatially resolved cell atlas of the mouse most foremost motor cortex by MERFISH. Nature 598, 137–143 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, X. et al. 3-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, R. et al. Decoding molecular and cell heterogeneity of mouse nucleus accumbens. Nat. Neurosci. 24, 1757–1771 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Knoten, A., Urata, S., Naik, A. S., Eddy, S. & Zhang, B. An atlas of healthy and injured cell states and niches within the human kidney. Preprint at bioRxiv https://doi.org/10.1101/2021.07.28.454201 (2021).

  • Ferreira, R. M. et al. Integration of spatial and single cell transcriptomics localizes epithelial–immune depraved-discuss in kidney destroy. JCI Perception 6, e147703 (2021).

  • Marshall, J. L., Noel, T., Wang, Q. S. & Bazua-Valenti, S. Excessive resolution Toddle-seqV2 spatial transcriptomics permits discovery of disease-particular cell neighborhoods and pathways. iScience 25, 104097 (2021).

  • Asp, M. et al. A spatiotemporal organ-wide gene expression and cell atlas of the increasing human coronary heart. Cell 179, 1647–1660 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, H. et al. Dissecting mammalian spermatogenesis the train of spatial transcriptomics. Cell Get. 37, 109915 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Madissoon, E., Oliver, A. J. & Kleshchevnikov, V. A spatial multi-omics atlas of the human lung finds a current immune cell survival arena of interest. Preprint at bioRxiv https://doi.org/10.1101/2021.11.26.470108 (2021).

  • Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to peep Alzheimer’s disease. Cell 182, 976–991 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rodriques, S. G. et al. Toddle-seq: a scalable abilities for measuring genome-wide expression at excessive spatial resolution. Science 363, 1463–1467 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu, Y. et al. Spatiotemporal immune panorama of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 12, 134–153 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Hunter, M. V., Moncada, R., Weiss, J. M., Yanai, I. & White, R. M. Spatially resolved transcriptomics finds the architecture of the tumor-microenvironment interface. Nat. Commun. 12, 6278 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stickels, R. R. et al. Extremely comely spatial transcriptomics at approach-cell resolution with Toddle-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ståhl, P. L. et al. Visualization and evaluation of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Chen, Okay. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Solutions 11, 360–361 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee, J. H. et al. Extremely multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ke, R. et al. In situ sequencing for RNA evaluation in preserved tissue and cells. Nat. Solutions 10, 857–860 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Macosko, E. Z. et al. Extremely parallel genome-wide expression profiling of particular person cells the train of nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics utilized to embryonic stem cells. Cell 161, 1187–1201 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vickovic, S. et al. Excessive-definition spatial transcriptomics for in situ tissue profiling. Nat. Solutions 16, 987–990 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cho, C.-S. et al. Small examination of spatial transcriptome the train of Seq-Scope. Cell 184, 3559–3572 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, Y. et al. Excessive-spatial-resolution multi-omics sequencing by deterministic barcoding in tissue. Cell 183, 1665–1681 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis the train of DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Beliveau, B. J. et al. Versatile produce and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huang, Z.-L. et al. Localization-basically based solely mostly tall-resolution microscopy with an sCMOS digicam. Decide. Say 19, 19156–19168 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Saurabh, S., Maji, S. & Bruchez, M. P. Evaluate of sCMOS cameras for detection and localization of single Cy5 molecules. Decide. Say 20, 7338–7349 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging particular person mRNA molecules the train of a pair of singly labeled probes. Nat. Solutions 5, 877–879 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Levsky, J. M., Shenoy, S. M., Pezo, R. C. & Singer, R. H. Single-cell gene expression profiling. Science 297, 836–840 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Femino, A. M., Fay, F. S., Fogarty, Okay. & Singer, R. H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lee, J. H. et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10, 442–458 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, X., Sun, Y.-C., Church, G. M., Lee, J. H. & Zador, A. M. Efficient in situ barcode sequencing the train of padlock probe-basically based solely mostly BaristaSeq. Nucleic Acids Res. 46, e22 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alon, S. et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological programs. Science 371, eaax2656 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Codeluppi, S. et al. Spatial organization of the somatosensory cortex published by osmFISH. Nat. Solutions 15, 932–935 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, G., Moffitt, J. R. & Zhuang, X. Multiplexed imaging of excessive-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Get. 8, 4847 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moffitt, J. R. et al. Excessive-throughput single-cell gene-expression profiling with multiplexed error-tough fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 113, 11046–11051 (2016).

  • Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells finds spatial organization of cells within the mouse hippocampus. Neuron 92, 342–357 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH finds subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Eng, C.-H. L. et al. Transcriptome-scale tall-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Goh, J. J. L. et al. Extremely particular multiplexed RNA imaging in tissues with atomize up-FISH. Nat. Solutions 17, 689–693 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nagendran, M., Riordan, D. P., Harbury, P. B. & Desai, T. J. Automatic cell-form classification in intact tissues by single-cell molecular profiling. eLife 7, e30510 (2018).

  • Liu, S. et al. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses. Nucleic Acids Res. 49, e58 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dar, D., Dar, N., Cai, L. & Newman, D. Okay. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 373, eabi4882 (2021).

  • Sountoulidis, A. et al. SCRINSHOT permits spatial mapping of cell states in tissue sections with single-cell resolution. PLoS Biol. 18, e3000675 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Solutions 13, 679–684 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shah, S. et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363–376 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-scale imaging of the 3D organization and transcriptional train of chromatin. Cell 182, 1641–1659 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Takei, Y. et al. Integrated spatial genomics finds world architecture of single nuclei. Nature 590, 344–350 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Takei, Y. et al. Single-cell nuclear architecture across cell kinds within the mouse brain. Science 374, 586–594 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Payne, A. C. et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science 371, eaay3446 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhao, T. et al. Spatial genomics permits multi-modal peep of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for rapid and comely epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome spot. Nat. Solutions 10, 1213–1218 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Solutions 14, 865–868 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Söderberg, O. et al. Enlighten commentary of particular person endogenous protein complexes in situ by proximity ligation. Nat. Solutions 3, 995–1000 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Weinstein, J. A., Regev, A. & Zhang, F. DNA microscopy: optics-free spatio-genetic imaging by a stand-on my own chemical reaction. Cell 178, 229–241 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hoffecker, I. T., Yang, Y., Bernardinelli, G., Orponen, P. & Högberg, B. A computational framework for DNA sequencing microscopy. Proc. Natl Acad. Sci. USA 116, 19282–19287 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lundberg, M., Eriksson, A., Tran, B., Assarsson, E. & Fredriksson, S. Homogeneous antibody-basically based solely mostly proximity extension assays present comely and particular detection of low-primary proteins in human blood. Nucleic Acids Res. 39, e102 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Swaminathan, J. et al. Extremely parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 36, 1076–1082 (2018).

    CAS 
    Article 

    Google Scholar 

  • Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Solutions 18, 1352–1362 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cable, D. M. et al. Remarkable decomposition of cell form mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Kleshchevnikov, V. et al. Cell2location maps beautiful-grained cell kinds in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Petukhov, V. et al. Cell segmentation in imaging-basically based solely mostly spatial transcriptomics. Nat. Biotechnol. 40, 345–354 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Littman, R. et al. Joint cell segmentation and cell form annotation for spatial transcriptomics. Mol. Syst. Biol. 17, e10108 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Prabhakaran, S. Sparcle: assigning transcripts to cells in multiplexed pictures. Bioinform. Adv. 2, vbac048 (2022).

    Article 

    Google Scholar 

  • Palla, G., Fischer, D. S., Regev, A. & Theis, F. J. Spatial parts of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McKenna, A. et al. Entire-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Perli, S. D., Cui, C. H. & Lu, T. Okay. Continuous genetic recording with self-focusing on CRISPR–Cas in human cells. Science 353, aag0511 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Rodriques, S. G. et al. RNA timestamps determine the age of single molecules in RNA sequencing. Nat. Biotechnol. 39, 320–325 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kalhor, R. et al. Developmental barcoding of total mouse by homing CRISPR. Science 361, eaat9804 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Frieda, Okay. L. et al. Synthetic recording and in situ readout of lineage files in single cells. Nature 541, 107–111 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chow, Okay.-H. Okay. et al. Imaging cell lineage with an artificial digital recording diagram. Science 372, eabb3099 (2021).

  • Fennell, Okay. A. et al. Non-genetic determinants of malignant clonal fitness at single-cell resolution. Nature 601, 125–131 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are published by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bendall, S. C. et al. Single-cell trajectory detection uncovers development and regulatory coordination in human B cell type. Cell 157, 714–725 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • La Manno, G. et al. RNA flee of single cells. Nature 560, 494–498 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA flee to transient cell states by dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abdelaal, T., Lelieveldt, B. P. F., Reinders, M. J. T. & Mahfouz, A. SIRV: spatial inference of RNA flee at the top possible-cell resolution. Preprint at bioRxiv https://doi.org/10.1101/2021.07.26.453774 (2021).

  • Srivatsan, S. R. et al. Vastly multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Adamson, B. et al. A multiplexed single-cell CRISPR screening platform permits systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, X. et al. Excessive-throughput mapping of lengthy-differ neuronal projection the train of in situ sequencing. Cell 179, 772–786 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, C., Lu, T., Emanuel, G., Babcock, H. P. & Zhuang, X. Imaging-basically based solely mostly pooled CRISPR screening finds regulators of lncRNA localization. Proc. Natl Acad. Sci. USA 116, 10842–10851 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fu, X. et al. Continuous polony gels for tissue mapping with excessive resolution and RNA bewitch effectivity. Preprint at bioRxiv https://doi.org/10.1101/2021.03.17.435795 (2021).

  • Gyllborg, D. et al. Hybridization-basically based solely mostly in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res. 48, e112 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar